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Crosstalk cancellation (XTC) yields high-spatial-fidelity reproduction of binaural audio through
loudspeakers allowing a listener to perceive an accurate 3-D image of a recorded soundfield. Such
accurate 3-D sound reproduction is useful in a wide range of applications in the medical, military
and commercial audio sectors. However, XTC is known to add a severe spectral coloration to the
sound and that has been an impediment to the wide adoption of loudspeaker-based binaural audio.
The nature of this coloration in two-loudspeaker XTC systems, and the fundamental aspects of the
regularization methods that can be used to optimally control it, were studied analytically using
a free-field two-point-source model. It was shown that constant-parameter regularization, while
effective at decreasing coloration peaks, does not yield optimal XTC filters, and can lead to the
formation of roll-offs and doublet peaks in the filter’s frequency response. Frequency-dependent
regularization was shown to be significantly better for XTC optimization, and was used to derive
a prescription for designing optimal two-loudspeaker XTC filters, whereby the audio spectrum is
divided into adjacent bands, each of is which associated with one of three XTC impulse responses,
which were derived analytically. Aside from the sought fundamental insight, the analysis led to the
formulation of band-assembled XTC filters, whose optimal properties favor their practical use for
enhancing the spatial realism of two-loudspeaker playback of standard stereo recordings containing
binaural cues.

I. INTRODUCTION

A. Background and Motivation

The ultimate goal of binaural audio with loudspeakers
(BAL), also known as transauralization[1], is to repro-
duce, at the entrance of each of the listener’s ear canals,
the sound pressure signals recorded on only the ipsilat-
eral channel of a stereo signal. If the stereo signal [2] was
encoded with the head-related transfer function (HRTF)
of the listener, and includes the proper ITD (interau-
ral time difference) and ILD (interaural level difference)
cues, then delivering the signal on each of the channels of
the stereo signal to the ipsilateral ear, and only to that
ear, would ideally guarantee that the ear-brain system
receives the cues it needs to hear an accurate 3-D repro-
duction of the recorded soundfield. Since, with playback
from two loudspeakers, each of them is also heard by
the contralateral ear (crosstalk), approaching the goal of
BAL requires an effective cancellation of this unintended
crosstalk.

In addition to crosstalk cancellation (XTC), effective
BAL requires an abatement of sound reflections in the
listening room, which cause degradation to the integrity
of the binaural cues at the listener’s ears[3–5]. While
this problem can be somewhat alleviated through pre-
scriptions that increase the ratio of direct to reflected
sound, full disambiguation of front-back sound local-
ization through BAL has been shown to require XTC
levels[6] above 20 dB, which are difficult to achieve prac-
tically even under anechoic conditions[3].

Therefore, it would seem that the goal stated in the
first paragraph could be more naturally reached with
binaural audio through headphones (or earphones)[7]

as both crosstalk and room reflections would be non-
existent. However, with earphones or headphones, the
location of the playback transducers in or very near the
ears means that non-idealities, (e.g., mismatches between
the HRTF of the listener and that used to encode the
recording, movement of the perceived sound image with
movement of the listener’s head, lack of bone-conducted
sound, transducer-induced resonances in the ear canal,
discomfort, etc.), when above a certain threshold, can
lead to difficulties in perceiving a realistic 3-D image and
to the perception that the sound (or some of its spectral
components) is inside, or too close to, the listener’s head.

Binaural playback through loudspeakers is largely im-
mune to this head internalization of sound, for even when
non-idealities in binaural reproduction are present, the
sound originates far enough from the listener to be per-
ceived to come from outside the head. Furthermore, cues
such as bone-conducted sound and the involvement of the
listener’s own head, torso and pinnae in sound diffraction
and reflection during playback (even if it departs from, or
interferes with, the diffraction-induced coloration repre-
sented in the HRTF used to encode the binaural record-
ing) could be expected to enhance the perceived realism
of sound reproduction relative to that achieved with ear-
phones. These potential advantages have, implicitly or
explicitly, motivated the development of XTC-enabled
BAL since the earliest work on the subject[8–10].

In scientific applications of BAL, such as its application
to study spatial hearing disabilities of elderly adults[3],
the high levels of XTC (above 20 dB) needed for highly-
accurate transmission of binaural cues to a listener re-
quire anechoic, or semi-anechoic, environments, precise
matching of the listener’s HRTF with that used in the
recording, and constrained positioning of the listener’s
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head in the area of equalization (“sweet spot”). In many
less stringent applications[10], modest levels of XTC,
even of a few dB over a limited range of frequencies,
have the potential of significantly enhancing the 3-D real-
ism of the reproduction of recordings containing binaural
cues. This is because, by definition, localization cues in
a binaural recording represent differential interaural in-
formation that is intended to be transmitted to the ears
with no crosstalk. In other words, crosstalk cancellation,
at any level, is a reduction of unintended artifice in the
loudspeaker playback of recordings containing significant
binaural cues.

This reduction of unintended artifice through XTC
should also apply to the loudspeaker playback of most
stereo recordings[11], especially those made in real acous-
tic spaces, and even to recordings made using standard
stereo microphone techniques without a dummy head,
since these techniques[12] all rely on preserving in the
recording a good measure of the natural ILD and ITD
cues needed for spatial localization during playback. We
should therefore expect that effecting even a relatively
low level of XTC to the playback of such standard stereo
recordings, even those lacking HRTF encoding, should
enhance image localization compared to playback with
full crosstalk, as well as the perception of width and
depth of the sound-field, since these binaural features
are always, to some degree, corrupted by crosstalk[13].

With such promises of high-spatial-fidelity reproduc-
tion of binaural recordings, and enhanced realism to the
playback of a large portion of existing acoustic stereo
recordings, the question arises as to why crosstalk can-
cellation has not yet penetrated widely in the professional
and consumer audio sectors.

A part of the answer to this question is related to
the physical constraints required for the practical im-
plementation of an effective XTC-enabled BAL play-
back system. These constraints include sensitivity to
head movements and a limited sweet spot[14–18], sen-
sitivity to room reflections[4, 5], and the often-required
departure from the well-established stereo loudspeaker
configuration[19, 20] (where the loudspeakers span an
angle of 60 degrees with respect to the listener). Much
research effort has been expended recently on relieving
some of these constraints and has resulted in potential
solutions, of varying degrees of practicality, which in-
clude: widening the sweet spot through the use of multi-
ple loudspeakers[21–24], providing XTC at multiple lis-
tening locations[25], enhancing robustness to head move-
ment through the use of sum and difference filters[26],
and dynamically moving the sweet spot to follow the lo-
cation of the listener’s head by tracking it with optical
sensors[27].

Another major impediment to the wide adoption of
XTC-enabled BAL has been the spectral coloration that
XTC filters inherently impose on the sound emitted by
the loudspeakers. The fundamental nature of this spec-
tral coloration, its basic features, its dependencies, and
optimal methods to abate it with minimal adverse ef-

fects on XTC performance, are the main subjects of this
paper.

B. The Problem of XTC-induced Spectral
Coloration

1. Nature of the Problem

One main difficulty in implementing XTC is to reduce
the artifice of crosstalk without adding an artifice of an-
other kind: spectral coloration. Sound waves traveling
from two distinct sources to the ears set up an interfer-
ence pattern in the intervening air space. Depending on
the frequency, the distance of the ears from the loud-
speakers, the distance between the loudspeakers, and the
phase relationship between the left and right components
of the recorded stereo signal, the wave interference at an
ear of the listener might be destructive, complementary,
or constructive. At some of the frequencies for which the
interference is destructive at the ear, XTC control (i.e.,
signal processing that would cause the waves from the
loudspeakers to the contralateral ears to be nulled) would
require boosting the amplitude of the emitted waves. As
we shall see in Section II C, for typical listening configu-
rations these level boosts[28] in the case of a perfect XTC
filter (defined as one that theoretically yields an infinite
XTC level over the entire audio band, in a free-field or
anechoic environment) can easily be in excess of 30 dB,
and therefore amount to severe spectral coloration.

Of course, such a “perfect” XTC filter would impose
these necessary level boosts only at the loudspeakers in
such a way that, at the listener’s ears, not only the
crosstalk is cancelled, but also the frequency spectrum is
reconstructed perfectly, i.e., with no spectral coloration.

As recognized in Ref. [29, 30], and as will be further
discussed in Section II C, the frequencies at which the
level boosts are required correspond to the frequencies
at which system inversion (the mathematical inversion
of the system’s transfer matrix, which leads to the XTC
filter) is ill-conditioned. At these frequencies, XTC con-
trol becomes highly sensitive to errors[30], so that even
a small error in the alignment of the listener’s head in
the real world would lead to an effective loss of XTC
control at, and near, these frequencies. Therefore, not
only would there be undesired crosstalk at the listener’s
ears at these frequencies, but also, and consequently, the
levels boosts which must necessarily be imposed at these
frequencies, would be fully hearable, even in the sweet
spot, as a coloration.

Even in an ideal world where the loudspeakers-listener
alignment is perfect, this spectral coloration imposed at
the loudspeakers would present three probems: 1) it
would be heard by a listener outside the sweet spot, 2) it
would cause a relative increase (compared to unprocessed
sound playback) in the physical strain on the playback
transducers, and 3) it would correspond to a loss in the
dynamic range[29]. Since even professional audio equip-
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ment is seldom designed to have more more than a few dB
headroom above the levels required to reproduce realistic
SPL peaks[31], the dynamic range of the program must
be decreased by more than 30 dB (minus the headroom),
in the case of the “perfect” XTC filter defined above, to
avoid clipping. This is particularly problematic, for in-
stance, in the case of wide-dynamic-range audio recorded
in 16 bits.

2. Previous Work and Present Goals

Takeuchi and Nelson[29] have developed a method that
not only yields excellent measured XTC performance[3,
32], but also effectively solves the problem of spectral col-
oration. However, their method, called “Optimal Source
Distribution” (OSD), which is discussed in Section II C.4,
requires the use of a minimum of six transducers posi-
tioned at various angles around the listener.

The problem of XTC-induced spectral coloration for
playback with only two loudspeakers remains compelling
due to the simplicity of the two-loudspeaker set-up and
its compatibility with existing audio equipment. In this
paper, we study this problem in the context of XTC op-
timization, which we define as maximizing XTC perfor-
mance for a desired tolerable level of spectral coloration
or, equivalently, minimizing the spectral coloration for a
desired XTC performance.

In particular, we use a free-field two-point-source
model and address, analytically, the fundamental aspects
of spectral coloration control through both constant-
parameter and frequency-dependent regularization meth-
ods. While regularization methods have been used in
the audio literature for sound source reconstruction[33]
and to control ill-conditioning in HRTF inversion[3, 23,
24, 34] their fundamental properties in the context of
XTC optimization and XTC-induced spectral coloration
have not been studied in detail, especially in the case of
frequency-dependent regularization.

Aside from the fundamental insight we seek through
this analysis, we aim to derive analytical expressions for
the time-domain impulse responses (IRs) of such optimal
XTC filters. These IRs are not only useful for shedding
light on the time-domain aspects of XTC optimization,
but can also lend their benefits, through digital convo-
lution engines, to (typically non-scientific) applications
where the needed XTC levels are below those requiring
inversion of the listener’s HRTF, and are sufficient to en-
hance the spatial realism of the two-loudspeaker playback
(in regular listening rooms) of audio signals containing
significant binaural cues.

II. THE FUNDAMENTAL XTC PROBLEM

In this section we start with the mathematical formu-
lation of the model and the governing transformation ma-

trices. We then define a set of metrics that will be useful
for evaluating and comparing the spectral coloration and
performance of XTC filters, and conclude with the defini-
tion and discussion of a benchmark for such comparisons:
the perfect XTC filter.

A. Formulation and Transformation Matrices

In order to render the analysis tractable enough so that
fundamental insight is more easily obtained, we make
the idealizing assumptions that sound propagation oc-
curs in a free field (with no diffraction or refelection from
the head and pinnae of the listener or any other physi-
cal objects), and that the loudspeakers radiate like point
sources.
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FIG. 1: Geometry of the two-source free-field model. (All
symbols are defined in the text.)

In the frequency domain, the air pressure at a free-field
point located a distance r from a point source (monopole)
radiating a sound wave of frequency ω is given by[35]

P (r, iω) =
iωρoq

4π
e−ikr

r
,

where ρ0 is the air density, k = 2π/λ = ω/cs the
wavenumber, λ the wavelength, cs the speed of sound
(340.3 m/s), and q the source strength (in units of vol-
ume per unit time). It is convenient to define

V =
iωρ0q

4π
,
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which is the time derivative of ρoq/(4π), the mass flow
rate of air from the center of the source.

Therefore, at the left ear of a listener in the symmetric
two-source geometry shown in Fig. 1, the air pressure due
to the two sources, under the above-stated assumptions,
add up as

PL(iω) =
e−ikl1

l1
VL(iω) +

e−ikl2

l2
VR(iω). (1)

Similarly, at the right ear, we have

PR(iω) =
e−ikl2

l2
VL(iω) +

e−ikl1

l1
VR(iω). (2)

Here, l1 and l2 are the path lengths between any of the
two sources and the ipsilateral and contralateral ear, re-
spectively, as shown in that figure.

In order to maintain a connection with the relevant
literature, we adopt the same nomenclature used in
Refs. [19, 20, 29, 30]. Namely, unless otherwise stated, we
use uppercase letters for frequency variables, lowercase
for time-domain variables, uppercase bold for matrices
and lowercase bold for vectors, and define

∆l ≡ l2 − l1 and g ≡ l1/l2 (3)

as the path length difference and path length ratio, re-
spectively. An inspection of the geometry illustrated
in Fig. 1 shows that 0 < g < 1, and that the path lengths
can be expressed as

l1 =

√
l2 +

(
∆r
2

)2

−∆r l sin(θ), (4)

l2 =

√
l2 +

(
∆r
2

)2

+ ∆r l sin(θ), (5)

where ∆r is the effective distance between the entrances
of the ear canals, and l is the distance between either
source and the interaural mid-point. As defined in Fig. 1,
Θ = 2θ is the loudspeaker span. Note that for l >>
∆r sin(θ), as in most loudspeaker-based listening set-ups,
we have g ' 1. Another important parameter is the time
delay,

τc =
∆l
cs
, (6)

defined as the time it takes a sound wave to traverse the
path length difference ∆l.

Using the above definitions, Eqs. (1) and (2) can be
re-written in matrix form as[

PL(iω)
PR(iω)

]
= α

[
1 ge−iωτc

ge−iωτc 1

] [
VL(iω)
VR(iω)

]
, (7)

where

α =
e−iωl1/cs

l1
. (8)

In the time domain, α is simply a transmission delay
(divided by the constant l1) that does not affect the shape
of the signal. Its role in insuring causality is discussed in
Section III B. The source vector v = [VL(iω), VR(iω)]T
is obtained from the vector of “recorded” signals d =
[DL(iω), DR(iω)]T , through the transformation

v = Hd, (9)

where

H =

HLL(iω) HLR(iω)

HRL(iω) HRR(iω)

 (10)

is the sought 2×2 filter matrix. Therefore, from Eq. (7),
we have

p = αCHd, (11)

where p = [PL(iω), PR(iω)]T is the vector of pressures at
the ears, and C is the system’s transfer matrix

C ≡
[

1 ge−iωτc

ge−iωτc 1

]
, (12)

which, like all matrices we will be dealing with, is sym-
metric due to the symmetry of the geometry.

In summary, the transformation from the signal d,
through the filter H, to the source variables v, then
through wave propagation from the sources to pressure
p at the ears of the listener, can be written simply as

p = αRd. (13)

where we have introduced the performance matrix, R,
defined as

R =

RLL(iω) RLR(iω)

RRL(iω) RRR(iω)

 ≡ CH. (14)

B. Metrics

We now wish to define a set of metrics by which to
judge the spectral coloration and performance of XTC
filters. In this context we note that the diagonal elements
of R represent the ipsilateral transmission of the signal
to the ears, and the off-diagonal elements represent the
undesired contralateral transmission, i.e., the crosstalk.

Therefore, the amplitude spectrum (to a factor α) of
a signal fed to only one (either left or right) of the two
inputs of the system, as heard at the ipsilateral ear is

Esi‖(ω) ≡ |RLL(iω)| = |RRR(iω)|,

where the subscripts “si” and ‖ stand for “side image”
and “ipsilateral ear (with respect to the input signal)”
respectively, since Esiip

, as defined, is the frequency re-
sponse (at the ipsilateral ear) for the side image that
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would result from the input being panned to one side.
Similarly, at the contralateral ear to the input signal
(subscript X), we have the following side-image fre-
quency response:

EsiX
(ω) ≡ |RLR(iω)| = |RRL(iω)|.

The system’s frequency response at either ear when the
same signal is split equally between left and right inputs
is another spectral coloration metric. It can be obtained
from the product R · [1/2, 1/2]T , which leads to

Eci(ω) ≡ |RLL(iω) +RLR(iω)
2

| = |RRL(iω) +RRR(iω)
2

|.

Here the subscript “ci” stands for “center image” since
Eci, as defined, is the frequency response (at either ear)
for the center image that would result from the input
being panned to the center.

Also of importance to our discussions are the frequency
responses that would be measured at the sources (loud-
speakers). These are denoted by S, and can be obtained
from the elements of the filter matrix H. They are given
using the same subscript convention used above (with “‖”
and “X” referring to the loudspeakers that are ipsilateral
and contralateral to the input signal, respectively) by

Ssi‖(ω) ≡ |HLL(iω)| = |HRR(iω)|,

SsiX
(ω) ≡ |HLR(iω)| = |HRL(iω)|,

Sci(ω) ≡ |HLL(iω) +HLR(iω)
2

| = |HRL(iω) +HRR(iω)
2

|.

An intuitive interpretation of the significance of the above
metrics is that a signal panned from a single input to both
inputs to the system will result in frequency responses
going from Esi to Eci at the ears, and Ssi to Sci at the
loudspeakers.

Two other spectral coloration metrics are the fre-
quency responses of the system to in-phase and out-of-
phase inputs to the system. These two responses are
obtained simply from the product of the filter matrix H

with the vectors [1, 1]T and [1,−1]T (or [−1, 1]T ), respec-
tively, and are given by:

Si(ω) ≡ |HLL(iω) +HLR(iω)| = |HRL(iω) +HRR(iω)|,
So(ω) ≡ |HLL(iω)−HLR(iω)| = |HRL(iω)−HRR(iω)|,

where the subscripts i and o denote the in-phase and out-
of-phase responses, respectively. Note that, as defined, Si
is double (i.e., 6 dB above) Sci, as the latter describes a
signal of amplitude 1 panned to center (i.e., split equally
between L and R inputs), while the former describes two
signals of amplitude 1 fed in phase to the two inputs of
the system.

Since a real signal can consist of various components
having different phase relationships, it is more useful

to combine Si(ω) and So(ω) into a single metric, Ŝ(ω),
which is the envelope spectrum that describes the maxi-
mum amplitude that could be expected at the loudspeak-
ers, and is given by

Ŝ(ω) = max [Si(ω), So(ω)] .

It is relevant to note that Ŝ(ω) is equivalent to ||H||,
the 2-norm of H, and that Si and So are the two singu-
lar values, which can be obtained through singular value
decomposition of the matrix as was done in Ref. [29].

Finally, an important metric that will allow us to eval-
uate and compare the XTC performance of various filters
is χ(ω), the crosstalk cancellation spectrum:

χ(ω) ≡ |RLL(iω)|
|RRL(iω)|

=
|RRR(iω)|
|RLR(iω)|

=
Esi‖(ω)

EsiX
(ω)

.

The above definitions give us a total of eight metrics,
(Esi‖ , EsiX

, Eci, Ssi‖ , SsiX
, Sci, Ŝ, χ), all real functions

of frequency, by which to evaluate and compare the spec-
tral coloration and XTC performance of XTC filters.

C. Benchmark: Perfect Crosstalk Cancellation

A perfect crosstalk cancellation (P-XTC) filter is de-
fined as one that, theoretically, yields infinite crosstalk
cancellation at the ears of the listener, for all frequen-
cies.

Crosstalk cancellation, as defined in Section I A, re-
quires that the pressure at each of the two ears be that
which would have resulted from the ipsilateral signal
alone, namely, in the frequency domain, PL = αDL and
PR = αDR, where all quantities are complex functions of
frequency. Therefore, in order to achieve perfect cancella-
tion of the crosstalk, Eq. (13) requires that R = I, where
I is the unity matrix, and thus, as per the definition of R
in Eq. (14), the P-XTC filter is simply the inverse of the
system transfer matrix expressed in Eq. (12), and can be
expressed exactly:

H [P ] = C−1 =
1

1− g2e−2iωτc

[
1 −ge−iωτc

−ge−iωτc 1

]
,

(15)
where the superscript [P ] denotes perfect XTC. For this
filter, the eight metrics we defined above become:

E
[P ]

si‖
= 1; E

[P ]

siX
= 0; E

[P ]

ci =
1
2

;

S
[P ]

si‖
(ω) =

∣∣∣∣ 1
1− g2e−2iωτc

∣∣∣∣ =
1√

g4 − 2g2 cos(2ωτc) + 1
;

S
[P ]

siX
(ω) =

∣∣∣∣ −ge−iωτc

1− g2e−2iωτc

∣∣∣∣ =
g√

g4 − 2g2 cos(2ωτc) + 1
;

S
[P ]

ci (ω) =
1
2

∣∣∣∣1− g

g + eiωτc

∣∣∣∣ =
1

2
√
g2 + 2g cos(ωτc) + 1

;

Ŝ[P ](ω) = max
(∣∣∣∣1− g

g + eiωτc

∣∣∣∣ , ∣∣∣∣1 +
g

eiωτc − g

∣∣∣∣) ,
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= max

(
1√

g2 + 2g cos(ωτc) + 1
,

1√
g2 − 2g cos(ωτc) + 1

)
; (16)

χ[P ](ω) = ∞. (17)

Therefore the perfect (χ = ∞) XTC filter gives flat fre-
quency responses at the ears (E[P ](ω) = constant), but
not at the sources. To appreciate the extent of spec-
tral coloration at the loudspeakers, we plot the S[P ](ω)
frequency responses expressed above in Fig. 2 for a typ-
ical value g = .985. Throughout this paper, for the sake
of illustration, we complement the non-dimensional plots
with dimensional calculations, which are represented by
the same curves read in terms of the frequency f = ω/2π
on the top axis, for a typical listening geometry charac-
terized by g = .985 and τc = 68 µs (i.e., 3 samples at the
Red Book CD sampling rate of 44.1kHz), which would
be the case, for instance, of a set-up with ∆r = 15 cm,
l = 1.6 m, and Θ = 18◦.)

S
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FIG. 2: Perfect XTC filter frequency responses at the loud-
speakers: amplitude envelope (heavy curve), side image (light
solid curve), and central image (light dashed curve). The dot-
ted horizontal line marks the envelope ceiling, which for this
case (g = .985) is 36.5 dB. The non-dimensional frequency ωτc
is given on the bottom axis, and the corresponding frequency
in Hz, shown on the top axis, is to illustrate a particular (typ-
ical) case of τc =3 samples at a sampling rate of 44.1 kHz.

(Since S
[P ]

si‖
' S

[P ]

siX
when g ' 1, these two spectra are shown

as the single curve S
[P ]

si .)

The peaks in these spectra occur at frequencies for
which the system must boost the amplitude of the sig-
nal at the loudspeakers in order to effect XTC at the
ears while compensating for the destructive interference
at that location. Similarly, minima in the spectra occur
when the amplitude must be attenuated.

Using the first and second derivatives (with respect
to ωτc) of the above expressions for the various S[P ](ω)

spectra, we find the following amplitudes and frequencies
for the associated peaks and minima, denoted by ↑ and
↓ superscripts, respectively:

S
[P ]↑

si‖
=

1
1− g2

at ωτc = nπ, with n = 0, 1, 2, 3, 4, . . .

S
[P ]↓

si‖
=

1
1 + g2

at ωτc = n
π

2
, with n = 1, 3, 5, 7, . . .

S
[P ]↑

siX
=

g

1− g2
at ωτc = nπ, with n = 0, 1, 2, 3, 4, . . .

S
[P ]↓

siX
=

g

1 + g2
at ωτc = n

π

2
, with n = 1, 3, 5, 7, . . .

S
[P ]↑

ci =
1

2− 2g
at ωτc = nπ, with n = 1, 3, 5, 7, . . .

S
[P ]↓

ci =
1

2 + 2g
at ωτc = nπ, with n = 0, 2, 4, 6, . . .

Ŝ[P ]↑ =
1

1− g
at ωτc = nπ, with n = 0, 1, 2, 3, 4, . . .

(18)

Ŝ[P ]↓ =
1√

1 + g2
at ωτc = n

π

2
, with n = 1, 3, 5, 7, . . .

(19)

For a typical listening set-up, g ' 1, say, our reference
g = .985 case shown in Fig. 2, the envelope peaks (i.e.,
Ŝ[P ]↑) correspond to a boost of

20 log10

(
1

1− .985

)
= 36.5 dB

(and the peaks in the other spectra, S[P ]↑

si‖
' S

[P ]↑

siX
'

S
[P ]↑

ci , correspond to boosts of about 30.5 dB.) While
these boosts have equal frequency widths across the spec-
trum, when the spectrum is plotted logarithmically (as
is appropriate for human sound perception), the low-
frequency boost is most prominent in its perceived fre-
quency extent. This bass boost has long been recog-
nized as an intrinsic problem in XTC. While the high-
frequency peaks could, in principle, be pushed out of the
audio range by decreasing τc (which, as can be seen from
Eqs. (4) to (6), is achieved by increasing l and/or decreas-
ing the loudspeaker span Θ, as is done in the so-called
“Stereo Dipole” configuration described in Ref. [19, 20],
where Θ = 10◦), the “low frequency boost” of the P-XTC
filter would remain problematic.

As mentioned in Section I B 1, the severe spectral
coloration associated with these high-amplitude peaks
presents three practical problems: 1) it would be heard
by a listener outside the sweet spot, 2) it would cause a
relative increase (compared to unprocessed sound play-
back) in the physical strain on the playback transducers,
and 3) it would correspond to a loss in the dynamic range.

These penalties might be a justifiable price to pay
if we are guaranteed the infinitely good XTC perfor-
mance (χ = ∞) and the perfectly flat frequency re-
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sponse (E[P ](ω) = constant) that the perfect XTC fil-
ter promises at the ears of a listener in the sweet spot.
However, in practice, these theoretically promised bene-
fits are unachievable due to the solution’s sensitivity to
unavoidable errors. This problem can best be appreci-
ated by evaluating the condition number of the transfer
matrix C.

It is well known that in matrix inversion problems the
sensitivity of the solution to errors in the system is given
by the condition number of the matrix. (For a discussion
of the condition number in the context of XTC system
errors, see Ref. [30]). The condition number κ(C) of the
matrix C is given by

κ(C) = ||C|| ||C−1|| = ||C|| ||H [P ]||.

(It is also, equivalently, the ratio of largest to smallest
singular values of the matrix.) Therefore, we have

κ(C) = max

(√
2(g2 + 1)

g2 + 2g cos(ωτc) + 1
− 1,√

2(g2 + 1)
g2 − 2g cos(ωτc) + 1

− 1

)
.

Using the first and second derivatives of this function,
as we did for the previous spectra, we find the following
maxima and minima:

κ↑(C) =
1 + g

1− g
at ωτc = nπ, with n = 0, 1, 2, 3, 4, . . .

κ↓(C) = 1 at ωτc = n
π

2
, with n = 1, 3, 5, 7, . . . (20)

as was also reported in Ref. [30] in terms of wavelengths.
First, we note that the peaks and minima in the con-
dition number occur at the same frequencies as those
of the amplitude envelope spectrum at the loudspeak-
ers, Ŝ[P ]. Second, we note that the minima have a
condition number of unity (the lowest possible value),
which implies that the filter resulting from the inver-
sion of C is most robust (i.e., least sensitive to errors in
the transfer matrix) at the non-dimensional frequencies
ωτc = π/2, 3π/2, 5π/2, . . . . Conversely, the condition
number can reach very high values (e.g., κ↑(C) = 132.3
for our typical case of g = .985) at the non-dimensional
frequencies ωτc = 0, π, 2π, 3π . . . . As g → 1 the ma-
trix inversion resulting in the P-XTC filter becomes ill-
conditioned, or in other words, infinitely sensitive to er-
rors. The slightest misalignment, for instance, of the
listener’s head, would thus result in a severe loss in XTC
control at the ears (at and near these frequencies) which,
in turn, causes the severe spectral coloration in Ŝ[P ](ω)
to be transmitted to the ears.

We are now in a position to appreciate the pre-
scription proposed and implemented by Takeuchi and
Nelson[29, 32], which effectively solves both the robust-
ness and spectral coloration problem of the P-XTC filter
by insuring that the system operates always under condi-
tions where κ(C) is small. This can be done by allowing

the loudspeaker span to be a function of the frequency.
More specifically, after noting that typically l >> ∆r, so
that the approximation ∆l ' ∆r sin(θ) holds, and there-
fore ωτc = ω∆l/cs = 2πf∆l/cs can be approximated by

ωτc '
2πf∆r sin(θ)

cs
for l� ∆r, (21)

we can re-write the robustness condition (stated in
Eq. (20)) as

Θ(f) ' 2 sin−1

(
ncs

4f∆r

)
, with n = 1, 3, 5, 7, . . .

Since both cs and ∆r are constant, the required loud-
speaker span is solely a function of the frequency f . In
practice this prescription, called Optimal Source Distri-
bution (OSD), can be implemented by using a crossover
network to distribute adjacent bands of the audio spec-
trum to pairs of transducers, whose spans are calculated
from the above equation so that in each band the condi-
tion number does not exceed unity by much, thus insur-
ing robustness and low coloration over the entire audio
spectrum. It is clear, however, that this solution is not
applicable to the case of a single pair of loudspeakers,
which is the focus of our analysis.

We refer the reader interested in the OSD method and
XTC errors to Ref. [29, 30, 32], and sum up the discus-
sion in this section by stating that, for the case of only
two loudspeakers, the perfect XTC filter carries in prac-
tice the penalties of over-amplification (and the associ-
ated loss of dynamic range) at frequencies where system
inversion is ill-conditioned, transducer fatigue, and a se-
vere spectral coloration that is heard by listeners inside
and outside the sweet spot.

III. CONSTANT-PARAMETER
REGULARIZATION

Regularization methods allow controlling the norm of
the approximate solution of an ill-conditioned linear sys-
tem at the price of some loss in the accuracy of the solu-
tion. The control of the norm through regularization can
be done subject to an optimization prescription, such as
the minimization of a cost function. Ref. [36] provides a
detailed discussion of regularization methods in a general
mathematical context, and Refs. [3, 18, 23, 33, 34] are ex-
amples of the use of regularization to control numerical
HRTF inversion. We discuss regularization analytically
in the context of XTC filter optimization, which we define
as the maximization of XTC performance for a desired
tolerable level of spectral coloration or, equivalently, the
minimization of spectral coloration for a desired mini-
mum XTC performance.

In essence, a nearby solution to the matrix inversion
problem is sought:

H [β] =
[
CHC + βI

]−1

CH , (22)
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where the superscript H denotes the Hermitian operator,
and β is the regularization parameter which essentially
causes a departure from H [P ], the exact inverse of C. In
this section we take β to be a constant, 0 < β � 1. The
pseudoinverse matrix H [β] is the regularized filter, and
the superscript [β] is used to denote constant-parameter
regularization. The regularization stated in Eq. (22) can
be shown[23, 34, 37] to correspond to a minimization of
a cost function, J(iω),

J(iω) = eH(iω)e(iω) + βvH(iω)v(iω), (23)

where the vector e represents a performance metric that
is a measure of the departure from the signal reproduced
by the perfect filter. Physically, then, the first term in the
sum constituting the cost function represents a measure
of the performance error, and the second term represents
an “effort penalty,” which is a measure of the power ex-
erted by the loudspeakers. For β > 0, Eq. (22) leads
to an optimum, which corresponds to the least-square
minimization of the cost function J(iω).

Therefore, an increase of the regularization parameter
β leads to a minimization of the effort penalty at the ex-
pense of a larger performance error and thus to an abate-
ment of the peaks in the norm of H, i.e., the coloration
peaks in the S(ω) spectra, at the price of a decrease in
XTC performance at and near the frequencies where the
system is ill-conditioned.

A. Frequency Response

Using the explicit form for C given by Eq. (12), in the
last equation above, we find:

H [β] =

H [β]
LL(iω) H

[β]
LR(iω)

H
[β]
RL(iω) H

[β]
RR(iω)

 , (24)

where

H
[β]
LL(iω) = H

[β]
RR(iω)

=
g2ei4ωτc − (β + 1)ei2ωτc

g2ei4ωτc + g2 − [(g2 + β)2 + 2β + 1]
,

(25)

H
[β]
LR(iω) = H

[β]
RL(iω)

=
geiωτc − g(g2 + β)ei3ωτc

g2ei4ωτc + g2 − [(g2 + β)2 + 2β + 1]
.

(26)

The eight metric spectra we defined in Section II B be-
come:

E
[β]

si‖
(ω) =

g4 + βg2 − 2g2 cos(2ωτc) + β + 1
−2g2 cos(2ωτc) + (g2 + β)2 + 2β + 1

;

E
[β]

siX
(ω) =

2gβ| cos(ωτc)|
−2g2 cos(2ωτc) + (g2 + β)2 + 2β + 1

;

E
[β]

ci (ω) =
1
2
− β

2 [g2 + 2 cos(ωτc) + β + 1]
;

S
[β]

si‖
(ω) =

√
g4 − 2(β + 1)g2 cos(2ωτc) + (β + 1)2

−2g2 cos(2ωτc) + (g2 + β)2 + 2β + 1
;

S
[β]

siX
(ω) =

g
√

(g2 + β)2 − 2(g2 + β) cos(2ωτc) + 1
−2g2 cos(2ωτc) + (g2 + β)2 + 2β + 1

;

S
[β]

ci (ω) =

√
g2 + 2g cos(ωτc) + 1

2[g2 + 2g cos(ωτc) + β + 1]
;

Ŝ[β](ω) = max

( √
g2 + 2g cos(ωτc) + 1

g2 + 2g cos(ωτc) + β + 1
,√

g2 − 2g cos(ωτc) + 1
g2 − 2g cos(ωτc) + β + 1

)
; (27)

χ[β](ω) =
g4 + βg2 − 2g2 cos(2ωτc) + β + 1

2gβ| cos(ωτc)|
. (28)

Of course, as β → 0, H [β] →H [P ], and it can be verified
that the spectra of the perfect XTC filter are recovered
from the expressions above.

The envelope spectrum, Ŝ[β](ω), is plotted in Fig. 3
for three values of β. Two features can be noted in that
plot: 1) increasing the regularization parameter atten-
uates the peaks in the spectrum without affecting the
minima, and 2) with increasing β the spectral maxima
split into doublet peaks (two closely-spaced peaks).

Β = 0

.005

.05

29.5 dB
19.5 dB

Π�100 Π�10 Π�2 Π 2Π 3Π
-20

-10

0

10

20

30

40
100 1000 104 2x104

Ω Τc

S`A
Β
E
Hd

B
L

f HHzL

FIG. 3: Effects of regularization on the envelope spectrum at
the loudspeakers, Ŝ[β](ω), showing peak attenuation and for-
mation of doublet peaks as β is increased. (Other parameters
are the same as for Fig. 2.)

To get a measure of peak attenuation and the condi-
tions for the formation of doublet peaks, we take the first
and second derivatives of Ŝ[β](ω) with respect to ωτc and
find the conditions for which the first derivative is nil and
the second is negative. These conditions are summarized
as follows: If β is below a threshold β∗ defined as

β < β∗ ≡ (g − 1)2, (29)

the peaks are singlets and occur at the same non-
dimensional frequencies as for the envelope spectrum
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peaks of the P-XTC filter (Ŝ[P ]↑), and have the following
amplitude:

Ŝ[β]↑ =
1− g

(g − 1)2 + β

at ωτc = nπ, with n = 0, 1, 2, 3, 4, . . .

If the condition

β∗ ≤ β � 1 (30)

is satisfied, the maxima are doublet peaks located at the
following non-dimensional frequencies:

ωτc = nπ ± cos−1

(
g2 − β + 1

2g

)
with n = 0, 1, 2, 3, 4, . . .

(31)
and have an amplitude

Ŝ[β]↑↑ =
1

2
√
β
, (32)

which does not depend on g. (The superscripts ↑ and
↑↑ denote singlet and doublet peaks, respectively.) The
attenuation of peaks in the Ŝ[β] spectrum due to regu-
larization can be obtained by dividing the amplitude of
the peaks in the P-XTC (i.e., β = 0) spectrum by that of
peaks in the regularized spectrum. For the case of singlet
peaks, the attenuation is

20 log10

(
Ŝ[P ]↑

Ŝ[β]↑

)
= 20 log10

[
β

(g − 1)2 + 1

]
dB,

and for doublet peaks, it is given by

20 log10

(
Ŝ[P ]↑

Ŝ[β]↑↑

)
= 20 log10

[
2
√
β

1− g

]
dB.

For the typical case of g = .985 illustrated in Fig. 3, we
have β∗ = 2.225 × 10−4, and for β = .005 and 0.05 we
get doublet peaks that are attenuated (with respect to
the peaks in the P-XTC spectrum) by 19.5 and 29.5 dB,
respectively, as marked on that plot.

Therefore, increasing the regularization parameter
above this (typically low) threshold causes the maxima in
the envelope spectrum to split into doublet peaks shifted
by a frequency ∆(ωτc) = cos−1[(g2 − β + 1)/2g] to ei-
ther side of the peaks in the response of the perfect XTC
filter. (For our illustrative case of g = .985, we have
β∗ = 2.225×10−4 and ∆(ωτc) ' 0.225 for β = .05). Due
to the logarithmic nature of frequency perception for hu-
mans, these doublet peaks are perceived as narrow-band
artifacts at high frequencies (i.e., for n = 1, 2, 3, . . . ), but
the first doublet peak centered at n = 0 is perceived as
a wide-band low-frequency rolloff of typically many dB,
as can be clearly seen in Fig. 3. Therefore, constant-β
regularization transforms the bass boost of the perfect
XTC filter into a bass roll-off.

Since regularization is essentially a deliberate intro-
duction of error into system inversion, we should expect
both the XTC spectrum and the frequency responses at
the ears to suffer (i.e., depart from their ideal P-XTC
filter levels of ∞ and 0 dB, respectively) with increasing
β. The effects of constant-parameter regularization on
responses at the ears are illustrated in Fig. 4.

Β = .05

.005

.005

.05

ΧAΒE

EsiÈÈ

AΒE

Π�100 Π�10 Π�2 Π 2Π 3Π
-20

-10

0

10

20

30

40
100 1000 104 2x104

Ω Τc

dB

f HHzL

FIG. 4: Effects of regularization on the the crosstalk cancel-
lation spectrum, χ[β](ω) (top two curves), and the ipsilateral

frequency response at the ear for a side image, E
[β]

si‖
(ω) (bot-

tom two curves). The black horizontal bars on the top axis
mark the frequency ranges for which an XTC level of 20 dB
or higher is reached with β = .05, and the grey bars represent
the same for the case of β = .005. (Other parameters are the
same as for Fig. 2.)

The black curves in that plot represent the crosstalk
cancellation spectra and show that XTC control is lost
within frequency bands centered around the frequen-
cies where the system is ill-conditioned (ωτc = nπ with
n = 0, 1, 2, 3, 4, . . . ) and whose frequency extent widens
with increasing regularization. For example, increasing
β to .05 limits XTC of 20 dB or higher to the frequency
ranges marked by black horizontal bars on the top axis
of that figure, with the first range extending only from
1.1 to 6.3 kHz and the second and third ranges located
above 8.4 kHz. In many practical applications, such
high (20 dB) XTC levels may not be needed or achiev-
able (e.g., because of room reflections and/or HRTF mis-
match) and the higher values of β needed to tame the
spectral coloration peaks below a required level at the
loudspeakers may be tolerated.

The E[β]

si‖
(ω) responses at the ears, shown as the bot-

tom curves in Fig. 4, depart only by a few dB from the
corresponding P-XTC (i.e., β = 0) filter response (which
is a flat curve at 0 dB). More precisely and generally, the
maxima and minima of the E[β]

si‖
(ω) spectrum are given
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by:

E
[β]↑

si‖
=

g2 + 1
g2 + β + 1

at ωτc = n
π

2
, with n = 1, 3, 5, . . .

E
[β]↓

si‖
=

g4 + (β − 2)g2 + β + 1
g4 + 2(β − 1)g2 + (β + 1)2

at ωτc = nπ, with n = 0, 1, 2, 3, 4, . . .

For the typical (g = .985) example shown in the figure, we
have, for β = .05, E[β]↑

si‖
= −.2 dB and E

[β]↓

si‖
= −6.1 dB,

showing that even relatively aggressive regularization re-
sults in a spectral coloration at the ears that is quite
modest compared to the spectral coloration the perfect
XTC filter imposes at the loudspeakers.

In sum, we conclude that, while constant-parameter
regularization is effective at reducing the amplitude of
peaks (including the “low-frequency boost”) in the enve-
lope spectrum at the loudspeakers, it typically results in
undesirable narrow-band artifacts at higher frequencies
and a rolloff of the lower frequencies at the loudspeakers.
This non-optimal behavior can be avoided if the regu-
larization parameter is allowed to be a function of the
frequency, as we shall see in Section IV.

Before we do so, it is insightful to consider the effects
of constant-parameter regularization on the time-domain
response of XTC filters.

B. Impulse Response

We start by making the substitution z = ei2ωτc in
Eqs. (25) and (26) to get

H
[β]
LL(z) = H

[β]
RR(z)

=
z2g2 − z(β + 1)

z2g2 + g2 − z [(g2 + β)2 + 2β + 1]
, (33)

H
[β]
LR(z) = H

[β]
RL(z)

=
z
[
gz−1/2 − g(g2 + β)z1/2

]
z2g2 + g2 − z [(g2 + β)2 + 2β + 1]

. (34)

The two expressions above have the same quadratic de-
nominator, which can be factored as

z2g2 + g2 − z
[
(g2 + β)2 + 2β + 1

]
= g2(z − a1)(z − a2),

where

a1 =
a−

√
a2 − 4g4

2g2
, a2 =

a+
√
a2 − 4g4

2g2
, (35)

and

a = (g2 + β)2 + 2β + 1. (36)

We can then re-write Eqs. (33) and (34) as

H
[β]
LL(z) = H

[β]
RR(z)

=
[
z − (β + 1)

g2

]
×(

1
1− a1z−1

)(
1

z − a2

)
,(37)

H
[β]
LR(z) = H

[β]
RL(z)

=
[
z−1/2 − (g2 + β)z1/2

g

]
×(

1
1− a1z−1

)(
1

z − a2

)
.(38)

Since 0 < g < 1, and β ≥ 0, we see from Eqs. (35)
and (36) that 0 ≤ a1 < 1 and a2 > 1, and therefore
|a1z

−1| < 1 and a2 > |z|. This allows us to express the
terms 1/(1− a1z

−1) and 1/(z− a2) in the last two equa-
tions as two convergent power series (whose convergence
insures that we have a stable filter), and thus write the
last two equations as

H
[β]
LL(z) = H

[β]
RR(z)

=
[
z − (β + 1)

g2

]
×( ∞∑

m=0

am1 z
−m

)( ∞∑
m=0

−a−m−1
2 zm

)
(39)

H
[β]
LR(z) = H

[β]
RL(z)

=
[
z−1/2 − (g2 + β)z1/2

g

]
×( ∞∑

m=0

am1 z
−m

)( ∞∑
n=0

−a−m−1
2 zm

)
.(40)

The filter is now in a form that can be readily trans-
formed into a time-domain filter, h[β], represented by

h[β] =

h[β]
LL(t) h

[β]
LR(t)

h
[β]
RL(t) h

[β]
RR(t)

 . (41)

We do so by substituting back ei2ωτc for z in Eqs. (39)
and (40), and taking the inverse Fourier transform (IFT)
to get

h
[β]
LL(t) =

1
2π

∫ ∞
−∞

H
[β]
LL(iω)eiωtdω

= h
[β]
RR(t) =

1
2π

∫ ∞
−∞

H
[β]
RR(iω)eiωtdω

=
[
δ(t+ 2τc)−

β + 1
g2

δ(t)
]
∗ ψ(t), (42)
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h
[β]
LR(t) =

1
2π

∫ ∞
−∞

H
[β]
LR(iω)eiωtdω

= h
[β]
RL(t) =

1
2π

∫ ∞
−∞

H
[β]
RL(iω)eiωtdω

=
[
δ(τc − t)

g
− (g2 + β)δ(t+ τc)

g

]
∗ ψ(t),

(43)

where the asterisk denotes the convolution operation, and
ψ(t) is the IFT of the product of the two series appear-
ing in Eqs. (39) and (40), and is given by the following
convolution of two trains of Dirac delta functions:

ψ(t) =
∞∑
m=0

am1 δ(t− 2mτc) ∗
∞∑
m=0

−a−m−1
2 δ(t+ 2mτc),

(44)
We see that the first train evolves forward in time and
the second evolves in reverse time.

The impulse response (IR) represented by Eqs. (42)
and (43) is plotted in Fig. 5 for three values of β.

The IR of the perfect XTC filter is shown in the top
panel of that figure and consists of two trains of decay-
ing and inter-delayed delta functions of opposite sign.
Mathematically, it is the special case of β = 0, for which
Eqs. (37) and (38) simplify to

H
[P ]
LL(z) = H

[P ]
RR(z) =

1
1− a1z−1

, (45)

H
[P ]
LR(z) = H

[P ]
RL(z) = − gz−1/2

1− a1z−1
, (46)

from which, through the inverse Fourier transform, we re-
cover the IR of the perfect XTC filter derived in Ref. [20]:

h
[P ]
LL(t) = h

[P ]
RR(t) =

∞∑
n=0

an1 δ(t− 2nτc) (47)

h
[P ]
LR(t) = h

[P ]
RL(t)

= −gδ(t− τc) ∗
∞∑
n=0

an1 δ(t− 2nτc), (48)

where a1 = g2 (obtained by setting β = 0 in Eqs. (35)
and (36)) is the pole of the filter. We see that the perfect
XTC IR starts at t = 0 with an amplitude of unity and
decays to an amplitude an1 = (l1/l2)2n after a time 2nτc.

Its physical significance has been discussed by Kirkeby
et. al.[20] who, along with Atal et. al.[9] before, recog-
nized the recursive nature of XTC filters. Briefly, a phys-
ical appreciation of the perfect crosstalk cancellation IR
can be obtained by considering the hypothetical case of
a positive pulse whose duration is much smaller than τc,
fed into only one of the two inputs of the system, say the
left input. From Eq. (9), we see that this pulse, dL(t), is
emitted from the left loudspeaker as a series of positive
pulses dL(t)∗hLL(t) (corresponding to the filled circles in
the top panel of Fig. 5) and from the right loudspeaker as
a series of negative pulses dL(t) ∗ hRL(t) (corresponding
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FIG. 5: Impulse responses h
[β]
LL(t) = h

[β]
RR(t) (filled circles)

and h
[β]
LR(t) = h

[β]
RL(t) (empty circles) for three values of β.

(g = .985, τc = 3 samples.)

to the empty circles in the same plot). These two series of
pulses are delayed by τc with respect to each other so that
after the first positive pressure pulse arrives at the left
ear, then reaches the right ear with a slightly smaller am-
plitude, it is cancelled there by a negative pressure pulse
of equal amplitude (that was emitted a time τc earlier by
the right loudspeaker), which in turn is cancelled at the
left ear by a positive pressure pulse, and so on. The net
result is that only the first pulse is heard and only at the
left ear, i.e., with no crosstalk.

The effects of regularization on the XTC IR can be
gleaned from a comparison of the three panels of Fig. 5.
When β is finite, the IR has a “pre-echo” part, i.e., it



E.Y. CHOUEIRI: OPTIMAL CROSSTALK CANCELLATION 12

extends in reverse time (t < 0) as shown in Fig. 5. As
also can be seen in that figure, and inferred from Eq. (44),
the delta functions in the t < 0 and t > 0 parts have
opposite signs. With increasing regularization, the t < 0
part increases in prominence and the IR becomes shorter
in temporal extent, which correspond in the frequency
domain to a spectrum with abated peaks.

To insure causality, a time delay must be used to in-
clude the t < 0 part of the IR. In practice (e.g., when
dealing with numerical HRTF inversion), this can be
done through a “modelling delay” that accommodates
both the non-causal part of the IR and the transmission
delay

δ

(
l1
cs
− t
)

associated with the factor α in Eq. (8).
The length of a filter having a pole close to the unit

circle, |z| = 1, is inversely proportional to the distance
between the pole and the unit circle[38]. As β is in-
creased the poles pull away from the unit circle as per
Eqs. (35) and (36), and therefore the length of a finite-β
IR is reduced by a factor of

1− a1

1− g2

with respect to the length of the perfect XTC IR. This
factor (which is based on a1 since 1 − a1 < |1 − a2| ) is
accurate as long as 1 − g2 << 1 and 1 − a1 << 1. For
instance, for the IR shown in the middle panel of Fig. 5
we have β = .005 and g = .985, which give a1 = .86 and
the IR is about 4.5 times shorter than the perfect XTC
IR.

IV. FREQUENCY-DEPENDENT
REGULARIZATION

In order to avoid the frequency-domain artifacts dis-
cussed in Section III A and illustrated in Fig. 3, we seek
an optimization prescription that would cause the enve-
lope spectrum Ŝ(ω) to be flat at a desired level Γ (dB)
over the frequency bands where the perfect filter’s enve-
lope spectrum exceeds Γ (dB). Outside these bands (i.e.,
below that level), we apply no regularization. This can
be stated symbolically as:

Ŝ(ω) = γ if Ŝ[P ](ω) ≥ γ, (49)

Ŝ(ω) = Ŝ[P ](ω) if Ŝ[P ](ω) < γ, (50)

where the P-XTC envelope spectrum, Ŝ[P ](ω), is given
by Eq. (16), and

γ = 10Γ/20, (51)

with Γ given in dB. We will take Γ ≥ 0 dB and, since Γ
cannot exceed the magnitude of the peaks in the Ŝ[P ](ω)

spectrum, γ is bounded by the inequalities:

1 ≤ γ ≤ 1
1− g

, (52)

where the last term is Ŝ[P ]↑ , given by Eq. (18).
The frequency-dependent regularization parameter

needed to effect the spectral flattening required
by Eq. (49) is obtained by setting Ŝ[β](ω), given by
Eq. (27), equal to γ and solving for β(ω), which is now a
function of frequency. Since the regularized spectral en-
velope, Ŝ[β](ω), (which is also ||H [β]||, the 2-norm of the
regularized XTC filter) is the maximum of two functions,
we get two solutions for β(ω):

βI(ω) = −g2 + 2g cos(ωτc) +

√
g2 − 2g cos(ωτc) + 1

γ
− 1,

(53)

βII(ω) = −g2− 2g cos(ωτc) +

√
g2 + 2g cos(ωτc) + 1

γ
− 1.

(54)
The first solution, βI(ω), applies for frequency bands
where the out-of-phase response of the perfect filter (i.e.,
the second singular value, which is the second argument
of the max function in Eq. (16)) dominates over the in-
phase response (i.e., the first argument of that function):

S[P ]
o =

1√
g2 − 2g cos(ωτc) + 1

≥ S
[P ]
i =

1√
g2 + 2g cos(ωτc) + 1

. (55)

Similarly, regularization with βII(ω) applies for frequency
bands where S

[P ]
i ≥ S

[P ]
o . Therefore, we must distin-

guish between three branches of the optimized solution:
two regularized branches corresponding to β = βI(ω)
and β = βII(ω), and one non-regularized (perfect-filter)
branch corresponding to β = 0. We call these Branch I,
II and P, respectively, and sum up the conditions associ-
ated with each as follows:

Branch I: applies where Ŝ[P ](ω) ≥ γ and S[P ]
o ≥ S[P ]

i ,

and requires setting Ŝ(ω) = γ, β = βI(ω);

Branch II: applies where Ŝ[P ](ω) ≥ γ and S
[P ]
i ≥ S[P ]

o ,

and requires setting Ŝ(ω) = γ, β = βII(ω);

Branch P: applies where Ŝ[P ](ω) < γ,

and requires setting Ŝ(ω) = Ŝ[P ](ω), β = 0.

Following this three-branch division, the envelope
spectrum at the loudspeakers, Ŝ(ω), for the case of
frequency-dependent regularization is plotted as the
thick black curve in Fig. 6 for Γ = 7 dB. This value
was chosen because it corresponds to the magnitude of
the (doublet) peaks in the β = .05 spectrum (i.e., Γ =
20 log10(1/2

√
β)), which is also plotted (light solid curve)
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as a reference for the corresponding case of constant-
parameter regularization. (We call a spectrum ob-
tained with frequency-dependent regularization and one
obtained with constant-β regularization “corresponding
spectra,” if the peaks in Ŝ[β](ω), whether singlets or dou-
blets, are equal to γ.) It is clear from that figure that

Branch I P II P I P II

Band 1 2 3 4 5 6 7

Β = 0

Β = .05

Β = Β HΩ, G = 7 dBL

Π�100 Π�10 Π�2 Π 2Π 3Π
-20

-10

0

10

20

30

40
100 1000 104 2x104

Ω Τc

S`
Hd

B
L

f HHzL

FIG. 6: Envelope spectrum at the loudspeakers, Ŝ(ω), for the
case of frequency-dependent regularization with Γ = 7 dB
(thick black curve) and for the corresponding reference case
of β = .05 (grey curve). The benchmark case of the perfect
XTC filter is also shown (dashed grey curve). The vertical
dotted lines show the frequency bounds of the resulting seven
bands, which are numbered consecutively at the top of the
plot, and labeled with the corresponding branch name at the
bottom. (Other parameters are the same as for Fig. 2.)

the low-frequency boost and the high-frequency peaks of
the perfect XTC spectrum, which would be transformed
into a low-frequency roll-off and narrow-band artifacts,
respectively, by constant-β regularization, are now flat
at the desired maximum coloration level, Γ. The rest of
the spectrum, i.e., the frequency bands with amplitude
below Γ, is allowed to benefit from the infinite XTC level
of the perfect XTC filter and the robustness associated
with relatively low condition numbers.

A. Band Hierarchy

The three-branch prescription therefore splits the au-
dio spectrum into a series of adjacent frequency bands,
which we number consecutively starting with Band 1 for
the lowest-frequency band. The frequency bounds for
each band can be found by setting Ŝ[P ](ω), given by
Eq. (16), to γ and solving for ωτc. This results in the fol-
lowing hierarchy of bands and their associated frequency
bounds:

• Bands 1, 5, 9, 13, 17, . . . , 4n+ 1 belong to Branch I,
and are bounded by

2nπ − φ ≤ ωτc ≤ 2nπ + φ; (56)

• Bands 2, 6, 10, 14, 18, . . . , 4n+2 belong to Branch P,
and are bounded by

2nπ + φ ≤ ωτc ≤ (2n+ 1)π − φ; (57)

• Bands 3, 7, 11, 15, 19, . . . , 4n + 3 belong to Branch
II, and are bounded by

(2n+ 1)π − φ ≤ ωτc ≤ (2n+ 1)π + φ; (58)

• Bands 4, 8, 12, 16, 20, . . . , 4n+4 belong to Branch P,
and are bounded by

(2n+ 1)π + φ ≤ ωτc ≤ 2(2n+ 1)π − φ; (59)

where n = 0, 1, 2, 3, 4, . . . and

φ = cos−1

(
g2γ2 + γ2 − 1

2gγ2

)
. (60)

For instance, applying this hierarchy to the case of g =
.985, and Γ = 7 dB (i.e., γ = 107/20 = 2.24), shown
in Fig. 6, we have the following set of eight consecutive
frequency bounds for the seven consecutive bands be-
tween ωτc = 0 and 3π: {0, 0.45, 2.69, 3.59, 5.83, 6.74,
8.97, 9.42}, which correspond to dimensional frequen-
cies, f (Hz) (with τs = 3 samples at 44.1 kHz) given
by the set: {0, 1061.5, 6288.5, 8411.5, 13638.5, 15761.5,
20988.5, 22000}, as marked by the vertical lines in Fig. 6.
Bands 1 and 5 belong to Branch I and are regularized
with β = βI(ω); Bands 3 and 7 belong to Branch II and
are regularized with β = βII(ω); and Bands 2, 4, and 6
belong to Branch P and are not regularized. In general,
successive bands, starting from the lowest-frequency one,
are mapped to the following succession of branches: I, P,
II, P, I, P, II, P, . . .

B. Frequency Response

The amplitude envelope of the frequency response at
the loudspeakers, given by Eqs. (49) and (50), was al-
ready shown in Fig. 6. The other optimized metric spec-
tra can be derived as follows:

Y
[O]
I (ω) = Y [βI(ω)](ω), for Branch-I bands; (61)

Y
[O]
II (ω) = Y [βII(ω)](ω), for Branch-II bands; (62)

Y
[O]
P (ω) = Y [P ](ω), for Branch-P bands; (63)

where Y represents any of the eight metric spectra we
defined in Section II B, the superscript [O] denotes the
sought optimized version of that metric spectrum, the
subscript I, II, or P denotes one of the three branches, and
the superscripts [βI(ω)] and [βII(ω)] denote regularization
following the formulas for the regularized metric spec-
tra in Section III A, but with β taken to be frequency-
dependent according to Eqs. (53) and (54).



E.Y. CHOUEIRI: OPTIMAL CROSSTALK CANCELLATION 14

For example, following the above hierarchical prescrip-
tion, and using Eqs. (28), (53), (54), and (17), the opti-
mized crosstalk cancellation spectrum becomes

χ
[O]
I,II(ω) = ∓

∓γx2 + (g2 + 1)
(
xγ ±

√
g2 ∓ x+ 1

)
|x|
(
γg2 ∓ γx+ γ −

√
g2 ∓ x+ 1

) ,

(64)

χ
[O]
P (ω) = χ[p](ω) =∞, (65)

where, for compactness, we have used the definition
x ≡ 2g cos(ωτc) and combined both branches into one ex-
pression using the double subscripts “I,II” and the double
sign (± or ∓) with the top and bottom signs associated
with Branches I and II, respectively. Similarly, the opti-
mized version of the ipsilateral frequency response at the
ear for a side image, Esi‖(ω), becomes

E
[O]

si‖ I,II
(ω) =

±xγ2(g2 ∓ x+ 1) + (γ2g + γ)
√
g2 ∓ x+ 1

g2 ∓ x± 2γx
√
g2 ∓ x+ 1 + 1

(66)

E
[O]

si‖P
(ω) = E

[P ]

si‖
(ω) = 1. (67)

These spectra are plotted in Fig. 7 where it is im-

EsiÈÈ

Χ
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Β = Β HΩ, G = 7 dBL
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FIG. 7: Crosstalk cancellation spectrum, χ(ω) (black curves),
and ipsilateral frequency response at the ear for a side image,
Esi‖

(ω) (light curves), for the cases of frequency-dependent

regularization (solid curves) and β = .05 (dashed curves).
The frequency ranges for which an XTC level of 20 dB or
higher is reached are marked on the top axis by black hori-
zontal bars for the case of β = β(ω) with Γ = 7 dB. (Other
parameters are the same as for Fig. 2.)

mediately clear from the χ(ω) curves that frequency-
dependent regularization yields a significant enhance-
ment of XTC level over that obtained with constant-β
regularization. We can also deduce from this plot that
the higher the desired minimum level of XTC, the larger

is the XTC enhancement over that attained with the cor-
responding constant-β regularization.

Furthermore, this XTC enhancement occurs with no
relative penalty to the frequency response at the ears,
as can be seen by comparing the Esi‖(ω) spectrum with
frequency-dependedent regularization (solid grey curve)
to that with β = .05 (dashed grey curve) in the same
figure.

It can be verified through Eqs. (28) and (64) that
constant-β regularization yields an XTC level that is
equal to that obtained with the corresponding frequency-
dependent regularization only at the discrete frequencies
at which to the peaks in the corresponding Ŝ[β](ω) spec-
trum are located, i.e., at

ωτc = nπ, if
1

4γ2
< (g − 1)2;

= nπ ± cos−1

(
g2 − β + 1

2g

)
,

if (g − 1)2 ≤ 1
4γ2
� 1,

with n = 0, 1, 2, 3, 4, . . . (68)

(where the inequalities are those conditioning singlet or
doublet peaks in the corresponding Ŝ[β](ω) spectrum,
and are derived from Eqs. (29), (30) and (32)). At
all other frequencies, frequency-dependent regularization
yields superior XTC performance to that obtained with
constant-β regularization. This behavior, which can also
be seen graphically in the χ(ω) curves of Fig. 7, is due to
the fact that forcing the envelope spectrum to be flat (in
bands belonging to Branches I and II) through frequency-
dependent regularization clamps the effort penalty term
in the cost function (second term in the sum in Eq. (23))
leading to a minimization of the performance error. This
in turn leads to a maximization of XTC level, which ex-
ceeds the corresponding constant-β XTC level at all fre-
quencies (except at those given by Eq. (68), where both
corresponding Ŝ spectra reach the same value, γ), since
the corresponding constant-β envelope, Ŝ[β](ω), is lower
than (or equal to) γ (as seen in Fig. 6).

Therefore, we conclude that if we define XTC filter
optimization as “the maximization of XTC performance
for a desired tolerable level of spectral coloration” as
we did earlier, only frequency-dependent regularization
leads to an optimal XTC filter over all frequencies, while
constant-β regularization leads to an XTC filter that
is optimized only at the discrete frequencies given by
Eq. (68).

C. Impulse Response: The Band-Assembled
Crosstalk Cancellation Hierarchy Filter

In the frequency domain, the optimized XTC filter is
given by the following matrix:
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H [O] =

H [O]
LL(iω) H

[O]
LR(iω)

H
[O]
RL(iω) H

[O]
RR(iω)

 , (69)

whose elements are derived following the same hierarchi-
cal prescription (i.e., Eqs. (61)-(63)) we used to get the
optimized metric spectra, namely by substituting β1(ω)
and β1(ω) from Eqs. (53) and (54), and β = 0 into each
of Eqs. (25) and (26), to get the Branch I, Branch II and
Branch P versions of the filter’s matrix elements. This
leads to

H
[O]
LLI,II

(iω) = H
[O]
RRI,II

(iω)

=
γ2
[
±x− g2

(
1 + e2iωτc

)]
+ γ
√
g2 ∓ x+ 1

g2 ± x
(

2γ
√
g2 ∓ x+ 1− 1

)
+ 1

,

(70)

H
[O]
LRI,II

(iω) = H
[O]
RLI,II

(iω)

=
∓γ2

[
±x− g2

(
1 + e2iωτc

)]
+ gγeiωτc

√
g2 ∓ x+ 1

g2 ± x
(

2γ
√
g2 ∓ x+ 1− 1

)
+ 1

,

(71)

H
[O]
LLP

(iω) = H
[O]
LLP

(iω) = H
[P ]
LL(iω) = H

[P ]
RR(iω), (72)

H
[O]
LRP

(iω) = H
[O]
RLP

(iω) = H
[P ]
LR(iω) = H

[P ]
RL(iω), (73)

where, again,

x ≡ 2g cos(ωτc),

and we have followed the same subscript and sign con-
ventions used to compact the XTC spectrum in Eq. (64).
Eqs. (72) and (73) give the Branch-P elements of the ma-
trix of the optimized filter, which are also the elements
of the perfect filter’s matrix given by Eqs. (45) and (46),
whose inverse Fourier transforms had given us the IRs
expressed in Eqs. (47) and (48). Therefore we need to
derive only the IRs associated with Branches I and II of
the optimized filter.

To do so, we follow, albeit through more cumber-
some algebra, the same approach we used to obtain the
constant-β IRs in Section III B; namely, we seek to factor
the frequency-domain response of the filter into a prod-
uct of terms, whose IFT can be readily found, or which
can be expressed as convergent series of functions whose
IFT can be readily found. The complete IR is then the
convolution of the IFTs of all the terms in the factored
frequency-domain response of the filter. The challenge
is to carry out the factorization in such a way that all
the invoked power series expansions converge over the
parameter space of interest.

The derivation is carried out in Appendix A, where we
also discuss the convergence of the adopted series expan-
sions. The resulting filter in the time domain is given by

the following two IRs:

h
[O]
LLI,II

(t) = h
[O]
RRI,II

(t) = (ψ0 + γψ1) ∗ ψa, (74)

h
[O]
LRI,II

(t) = h
[O]
RLI,II

(t) = [∓ψ0 + γgδ(t+ τc) ∗ ψ1] ∗ ψa,

(75)

where

ψa = ±ψ2 ∗ ψ3 ± (ψ1 ∓ ψ4) ∗ ψ5ψ6(c1) ∗ ψ6(c2),
(76)

ψ0 = −g2γ2δ(t)± gγ2δ(τc − t)± gγ2δ(t+ τc)
−g2γ2δ(t+ 2τc), (77)

ψ1 =
∞∑
m=0

(
1
2
m

)
(∓g)m

(
g2 + 1

) 1
2−m ×

m∑
k=0

(
m
k

)
δ(2kτc − t−mτc), (78)

ψ2 = ± 1
4gγ

∞∑
m=0

(
− 1

2
m

)
(−1)m ×

2m∑
k=0

(
2m
k

)
(−1)k+m4−mδ(t+ 2kτc − 2mτc),

(79)

ψ3 =
∞∑
m=0

(
− 1

2
m

)
(∓g)m

(
g2 + 1

)− 1
2−m ×

m∑
k=0

(
m
k

)
δ(2kτc − t−mτc), (80)

ψ4 = 2gγδ(τc − t) + 2gγδ(t+ τc), (81)

ψ5 = ± 1
(4gγ)3

∞∑
m=0

(
− 3

2
m

)
(−1)m ×

2m∑
k=0

(
2m
k

)
(−1)k+m4−mδ(t+ 2kτc − 2mτc),

(82)

ψ6(c) =
∞∑
p=0

(
±c
2g

)p ∞∑
n=0

(
−p2
n

)
(−1)n ×

2n∑
k=0

(
2m
k

)
(−1)k+m4−mδ(t+ 2kτc − 2mτc).

(83)

with the constants c1 and c2 given by

c1 =

√
16γ2(g2 + 1) + 1∓ 1

8γ2
, (84)

c2 =
−
√

16γ2(g2 + 1) + 1∓ 1
8γ2

. (85)

The impulse responses are valid for values of γ and g that
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satisfy the condition:

max

(√
5 +
√

5

2
√
g2 + 1

, 1

)
≤ γ ≤ 1

1− g
, (86)

which is shown graphically as a region plot in Fig. 9, in
Appendix A.
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FIG. 8: Impulse response of the optimal XTC filter: h
[O]
LL(t) =

h
[O]
RR(t) (filled circles) and h

[O]
LR(t) = h

[O]
RL(t) (empty circles),

for Branch I (top panel) and Branch II (bottom panel). (Γ =
7 dB, g = .985, and τc = 3 samples, as in Fig. 2.)

The impulse responses for Branch-I and Branch-II of
this optimal filter are shown in Fig. 8 for our typical
case of g = .985 and τc = 3 samples, and, along with
the perfect filter IR shown in the top panel of Fig. 5,
completely specify the optimal XTC filter.

Compared to the corresponding (β = .05) finite-beta
IR in the bottom panel of Fig. 5, the optimal XTC IRs
shown in Fig. 8 are more complex in their structure. Fur-
thermore, each IR consists of a train of deltas that are
spaced by τc as opposed to the 2τc intervals we had for
the perfect and finite-beta filters.

These IRs are difficult to interpret physically because,
as they stand, they also include the time response asso-
ciated, in the frequency domain, with frequency bands
where the IR is not valid. This is illustrated in Ap-
pendix B, in the bottom panel of Fig. 10, where the
envelope spectrum obtained from the Fourier transform
of the Branch-I optimal IR is compared to the expected

flat envelope spectrum, Ŝ[O]
I (ω) = γ. The agreement is

excellent only in the bands belonging to the branch for
which the IR is intended (which, in the case illustrated in
that plot, are the first and fifth bands). In other bands,
not only is the IR not valid, but, as discussed in the
appendices, its application may lead to singularities as-
sociated with the divergence of some of the series that
constitute it (see for instance the singularities appearing
in the Branch-P bands in Fig. 10).

Therefore, in principle, the application of the op-
timal filter requires that, prior to XTC filtering, the
recorded signal, [dLi

(t), dRi
(t)]T , be passed through a

crossover filter whose crossover frequencies are set to
the band bounds given by the hierarchical prescription
in Eqs. (56)-(59). The resulting bands are then as-
sembled into three groups (I, II and P) according to
their branch identity. The combined recorded stereo sig-
nals in each group can thus be represented by a vector
[dLi(t), dRi(t)]

T , where the index i stands for Branch I,
II or P. The loudspeakers source vector, in the time do-
main, needed for optimal crosstalk cancellation is then
given by the time-domain version of Eq. (9):vL(t)

vR(t)

 =
∑
i


h[O]

LLi
(t) h

[O]
LRi

(t)

h
[O]
RLi

(t) h
[O]
RRi

(t)

 ∗
dLi(t)

dRi(t)


 ,

(87)
where the summation is over the three branches, and
the convolution operates in the same fashion as matrix
multiplication.

Causality is insured by calculating the IRs with a “pre-
delay,” starting back at a time t < 0, whose exact tem-
poral extent is not important as long as it allows the in-
clusion of the salient part of the IR. For the IRs in Fig. 8,
this pre-delay should start at about t = −100 samples.

V. APPLICATION AND PRACTICAL
CONSIDERATIONS

While the first goal of the preceding analyses was
to provide insight into the theory and fundamentals of
XTC optimization, the resulting optimized IR can offer
practical benefits in audio applications where the spa-
tial fidelity of a recording is degraded by the unintended
crosstalk inherent in playback through loudspeakers. As
we argued in Section I A, this is the case of not only
pure binaural recordings made with dummy head micro-
phones, but also of the vast majority of standard stereo
recordings, since they generally contain ILD and ITD
cues, which would be degraded by unintended crosstalk.

A. The Value of Analytical XTC Filters

Analytical XTC filters cannot rival the performance of
numerical HRTF-based XTC filters in ideal situations,
i.e., when 1) sound reflections in the listening room are
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negligible or non-existent (anechoic or semi-anechoic en-
vironments), 2) the recording was made with the indi-
vidualized inverted HRTF of the listener, 3) the XTC
filter includes the individualized inverted HRTF of the
listener, and 4) the listener’s head is constrained in a re-
stricted sweet spot. Any departure from these idealities
would cause the effective XTC level at the listener’s ears
to drop, and the spectral coloration that is necessarily
imposed at the loudspeakers to become more audible at
the listener’s ears.

Since in many, if not most, practical listening situa-
tions in non-anechoic environments all of the four ide-
alities listed above are compromised to a certain degree,
the practically achievable XTC level of numerical HRTF-
based XTC filters seldom exceeds 13 dB over a wide fre-
quency range[3]. An optimal analytical XTC filter, even
one based on a free-field model, such as the one derived in
the previous section, can become competitive especially
in situations where it is calculated for, and used with,
a loudspeaker span that is small enough to diminish the
relative importance of head-shadowing effects. In such
applications, an optimal analytical XTC filter can offer
the following advantages over a numerical HRTF-based
XTC filter:

1. The simplicity of using a single filter for all indi-
viduals.

2. Shorter filters which incur lower CPU loads on the
digital processor.

3. Low spectral coloration for listeners inside and out-
side the sweet spot (and the associated decrease in
the physical loading of the transducers).

(The third advantage could, in principle, be neutralized
by applying the optimal regularization method, described
in the previous section, to the design of a numerical
HRTF-based XTC – at the price of eroding some of the
advantages associated with the use of an individualized
HRTF.)

With this justification for the usefulness of
analytically-derived optimal XTC filters, we turn
our attention to some practical issues related to their
specific design and their application to real listening
situations.

B. Filter Design Strategy

Of course, filter design strategies depend on perfor-
mance requirements (desired maximum tolerable col-
oration level or minimum XTC level) and the specifics
and constraints of the listening configuration (constraints
on the listening distance, l, and the loudspeaker span, Θ,
and to some extent, the sound reflection characteristics
of the listening room).

One approach to filter design is to start with the spec-
ification of the maximum tolerable coloration level, that
is, Γ in dB. For instance, for critical (e.g., audiophile)

listening and audio mastering applications, it may not
be desirable to have Γ exceed 3-5 dB, while for home-
theatre applications, audio (spectral) fidelity may be in-
tentionally compromised with higher values of Γ for the
advantage of having more XTC headroom for reproduc-
ing surround effects with the two loudspeakers.

The choice of loudspeaker span is particularly impor-
tant. In cases where it is constrained to a set value, as
for compatibility with the so-called “standard stereo tri-
angle”, i.e., Θ = 60◦, the value of Θ becomes a fixed
input to the design process and is used, along with l, to
calculate g and τc from Eqs. (3)-(6). (The inequality in
Eq. (86), which is typically easy to satisfy, must hold for
that particular combination of γ = 10Γ/20 and g. If not,
one of the input parameters, usually Γ, must be adjusted
accordingly before proceeding further with the design).
In cases where Θ is not constrained to a preset value,
it becomes a useful variable in the filter design process
and can be used to simplify the filter, as discussed in
Section V C below.

With γ, g, and τc specified, one has all the parame-
ters needed to calculate the spectra associated with the
XTC optimal filter, as described in Sections IV A and
IV B, and thus evaluate the various aspects of the fil-
ter. (These evaluations are more conveniently done in
terms of the dimensional frequency, f , in Hz, by select-
ing the intended sampling rate.) In particular, a plot
of the XTC spectrum according to Eqs. (64) and (65)
allows the evaluation of the XTC performance of the fil-
ter (defined as the frequency extent over which a desired
minimum XTC level is reached or exceeded) which, by
virtue of the implicit optimization (i.e., minimization of
the cost function in Eq. (23)), is the maximum achievable
XTC performance for that particular set of input param-
eters. If the calculated XTC performance is judged by
some empirical standards to be above that achievable in
the intended listening environment (for instance, sound
reflections in a reverberant room may limit the achiev-
able XTC to only a few dB over a good part of the audio
spectrum), the calculation can be repeated with a lower
value of Γ, thus leading to even higher spectral fidelity.
Conversely, a lower than desired XTC performance can
be amended by raising Γ.

Once the target XTC performance and coloration level
are reached, one proceeds to the time domain by calcu-
lating the Branch-P IRs from Eqs. (42)-(44), and the
Branch-I, and II IRs from Eqs. (74)-(85). The loud-
speakers source vector can then be calculated according
to Eq. (87), following the prescription given in the text
preceding that equation, i.e., by appropriately convolv-
ing the 3-part IR with the recorded stereo signal after
having passed the latter through a crossover filter whose
crossover frequencies are set to the band bounds given
in Eqs. (56)-(59). The convolution operations can be
carried out digitally, and in real time if desired, using
a digital convolution plugin. (Such software plugins rely
on FFT-based algorithms[39, 40] for fast convolution and
have become readily available in the commercial and pub-



E.Y. CHOUEIRI: OPTIMAL CROSSTALK CANCELLATION 18

lic domains for use as IR-based reverb processors.)

C. Simplified Implementation

An XTC system consisting of the properly configured
crossover filter, the three XTC IR matrices, and the mul-
tiple instances of convolution plugins, can be considered
as a single filter, having stereo inputs and outputs, which
acts as a linear operator. Therefore, once assembled, it
can be “rung” once by a single delta impulse, applied
to one of its two inputs, and the recorded stereo output
would then represent one of the two columns of the 2x2
IR matrix of the entire filter. Because of symmetry, the
other column of the IR matrix is obtained by simply flip-
ping the two recorded outputs. This results in a single
IR, representing the entire three-branch multi-band fil-
ter, and simplifies any future application of Eq. (87) to
a simpler one (with no crossover filtering) in which the
summation and indices are foregone.

D. The Role of Loudspeaker Span

Another important simplification arises in applications
where the loudspeaker span, Θ = 2θ, is not constrained
to a preset value, such at the 60◦ of the standard stereo
triangle, and therefore can be a variable in the filter de-
sign process. Since τc depends on the loudspeaker span,
the bounds of the bands can be moved by varying θ. By
setting θ equal to a particular value, θ∗, the higher bound
of the second band (which belongs to Branch P) can be
made to coincide with a cutoff frequency, fc, above which
XTC is psychoacoustically not needed. Such a band-
limited optimal XTC filter has the advantage that it re-
quires only a 2-band crossover filter, and its IR consists
of only the Branch-I and Branch-P parts, thus leading to
significant simplifications in the design and implementa-
tion of the filter.

To find an expression for θ∗ as a function of fc, under
the typically valid approximations g ' 1 and l � ∆r,
we set ωτc equal to the upper bound of the second band
(which, from Eq. (57), is π − φ), use Eq. (21), and solve
for θ, to get

θ∗ ' sin−1

cs
(
π − cos−1

[
2γ2 − 1

2γ2

])
2πfc∆r

 . (88)

A number of studies[27, 41] have suggested that XTC
above a frequency of about 6 kHz is not critical or per-
haps even necessary. Therefore, we set fc to that value
in the above equation, solve for θ∗, design the filter for
a loudspeaker span of 2θ∗, use a 2-band crossover filter
to separate the first two bands, apply the Branch-I and
Branch-P parts of the filter to the first and second bands,
respectively, and allow the part of the audio spectrum
above fc to bypass the filter.

It is relevant to mention in the context of loudspeaker
span that keeping Θ small offers advantages that have
been recognized since Kirkeby and co-workers presented
their analysis[20] of the “stereo dipole” configuration,
which has a span of only 10◦. Objective and subjective
evaluations of the effects of loudspeaker span in XTC
systems have indicated that such a low-Θ configuration
gives a larger sweet spot than that obtained with larger
loudspeaker spans[18]. This can be attributed to the rel-
ative insensitivity of the path length difference, ∆l, to
head movements when the span is small. On the other
hand, the same study favored larger spans partly because
increasing the span, with the distance l fixed, lowers the
value of g and consequently decreases the magnitude of
the coloration peaks and condition numbers. We should
however expect, in light of our study of regularization,
that an optimal XTC filter in which regularization is used
to flatten these peaks and lower the condition numbers,
while maintaining good XTC performance, should tip the
balance in favor of lower values of Θ. This remains to be
verified experimentally.

Another argument in favor of small loudspeaker spans
is particular to the use of analytical filters based on a
free-field model, such as those discussed in this paper.
Since the free-field model ignores the presence of the lis-
tener’s head, it should be expected that filters based on
it perform better when the effects of head shadowing are
minimized. This can be achieved by decreasing the span
angle as can be seen, for instance, in Fig. 3.13 of Ref. [27],
where the inter-aural transfer function (the ratio of the
frequency responses at the two ears) of a typical human
head, measured as a function of the azimuthal position
of a sound source, is small (about -2dB) and flat (within
2 dB) for a small horizontal source azimuth (θ = 5◦), but
worsens with increasing azimuths.

E. An Example

To illustrate the above design guidelines and discus-
sions, we give the example of a listening situation whose
only two design requirements are a distance l = 1.6 m
and a maximum coloration level of Γ = 7 dB. From
Eq. (88), with fc ' 6 kHz, and ∆r = 15 cm[42], we
get θ = 9◦, which we take as half the loudspeaker span.
From Eqs. (3)-(6), we can then calculate g = .985 and
τc = 3 samples at a sampling rate of 44.1 kHz. These are
precisely the dimensional and non-dimensional parame-
ters chosen for the calculations that are illustrated in the
plots throughout this paper. The Branch-P and Branch-I
IRs are therefore given by those shown in the top panels
of Figs. 5 and 8, respectively. The Branch-II IR is not
needed as the XTC filter is limited to 6 kHz, which, by
design, was made to be the upper bound of the second
band (Branch-P). The spectra associated with this filter
are given by the solid curves in Figs. 6 and 7, with the
dimensional frequency read off the top axes of the plots,
up to the cuttoff frequency of 6 kHz. In particular, we
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note that the XTC performance (top curve in Fig. 7), ex-
ceeds 20 dB for a wide range of frequencies that extends
from the 6 kHz cuttoff down to 850 Hz, then drops off
with decreasing frequency, reaching 5 dB at 290 Hz.

VI. SUMMARY

We distill the main points and findings of this work in
the following bullets.

• 3-D reproduction of binaural audio with two loud-
speakers requires cancellation of the crosstalk be-
tween the loudspeakers and the contralateral ears
of the listener. A perfect XTC filter (i.e., one with
infinite crosstalk cancellation) can be easily de-
signed but causes severe spectral coloration to the
sound emitted by the loudspeakers due to the ill-
conditioned inversion of the system’s transfer func-
tion.

• The coloration produced by the perfect XTC filter
consists of peaks in the frequency spectrum that
can typically exceed 30 dB, and thus strain the
playback transducers and significantly reduce the
dynamic range of the playback system. Further-
more, the coloration is heard throughout the listen-
ing space and, due to extreme sensitivity to errors
in the system, it is also heard by the listener in the
sweet spot.

• Using a two-source free-field model, we have shown
that constant-parameter regularization, which has
been used previously to design HRTF-based XTC
systems, can tame these peaks but can produce a
bass roll-off and high-frequency artifacts in the fil-
ter’s frequency response. Furthermore, we demon-
strated that constant-beta regularization does not
lead to the optimization of XTC filters across all
frequencies, but rather only at discrete, widely-
spaced frequencies.

• Full optimization can be achieved through
frequency-dependent regularization, and requires
that the audio spectrum be divided into a hier-
archical set of adjacent frequency bands, each of
which belonging to one of three solution branches
that make up the complete optimal filter. We de-
rived analytical expressions for the three branches
of the filter in terms of series expansions, which we
showed are convergent for typical listening situa-
tions. The corresponding impulse responses were
then obtained analytically, and expressed as con-
volutions of trains of Dirac deltas.

• Aside from seeking fundamental insight into the na-
ture and characteristics of optimal XTC filters, we
addressed a number of issues related to their appli-
cation. In particular, we argued that analytical fil-
ters derived under the simplifying assumptions of a

free-field model can be useful in practical situations
where individualized HRTF-based XTC filters are
either too cumbersome to implement or not needed
to attain the XTC levels required for enhancing the
spatial fidelity of playback in non-anechoic environ-
ments. We described a strategy for designing such
optimal filters that meets practical design require-
ments, and we gave an illustrative example for a
typical listening configuration.
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APPENDIX A: DERIVATION OF THE IMPULSE
RESPONSE OF THE OPTIMAL XTC FILTER

Here we carry out the derivation of Eqs. (74) to (83)
following the approach outlined in Section IV C.

We start by factoring the expressions appearing
in Eqs. (70) and (71), which, we note, have the same
denominator, into the following product of terms:

H
[O]
LLI,II

(iω) = H
[O]
RRI,II

(iω) = (Ψ0 + γΨ1) Ψa (A1)

H
[O]
LRI,II

(iω) = H
[O]
RLI,II

(iω) =
(
∓Ψ0 + γgeiωτcΨ1

)
Ψa,

(A2)

where

Ψ0 = γ2
[
±x−

(
1 + e2iωτc

)
g2
]
, (A3)

Ψ1 =
√
g2 ∓ x+ 1, (A4)

Ψa =
1

g2 ± x
(

2γ
√
g2 ∓ x+ 1− 1

)
+ 1

. (A5)

The term Ψa can be factored as

Ψa = ±Ψ2Ψ3 ± (Ψ1 ∓Ψ4)Ψ5Ψ6(c1)Ψ6(c2),

where

Ψ2 =
1

2γx
, (A6)

Ψ3 =
1√

g2 ∓ x+ 1
, (A7)

Ψ4 = 2γx, (A8)

Ψ5 =
1

8γ3x3
, (A9)

Ψ6(c) =
1

1− cx−1
, (A10)
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and

c1 =

√
16γ2(g2 + 1) + 1∓ 1

8γ2
, (A11)

c2 =
−
√

16γ2(g2 + 1) + 1∓ 1
8γ2

. (A12)

In the time domain, the filter expressed by Eqs. (A1)
and (A2) becomes:

h
[O]
LLI,II

(t) = h
[O]
RRI,II

(t) = (ψ0 + γψ1) ∗ ψa, (A13)

h
[O]
LRI,II

(t) = h
[O]
RLI,II

(t) = [∓ψ0 + gγδ(t+ τc) ∗ ψ1] ∗ ψa,

(A14)

where

ψa = ±ψ2 ∗ ψ3 ± (ψ1 ∓ ψ4) ∗ ψ5ψ6(c1) ∗ ψ6(c2). (A15)

The ψi terms are functions of time, and are the IFTs of
the Ψi terms, which are functions of frequency.

We now seek the IFT of each of the Ψi terms given
above.
• Ψ0: The IFT of the expression in Eq. (A3) can be

readily found by substituting back 2g cos(ωτc) for x and
carrying out the IFT integration:

ψ0(t) =
1

2π

∫ ∞
−∞

γ2
[
±2g cos(ωτc)− g2 − e2iωτc

]
dω

= −g2γ2δ(t)± gγ2δ(τc − t)± gγ2δ(t+ τc)
−g2γ2δ(t+ 2τc). (A16)

• Ψ1: Making the substitution b = g2 + 1 in Eq. (A4),
we get

Ψ1 =
√
b∓ x, (A17)

which can be expressed as the series expansion

Ψ1 =
∞∑
m=0

(
1
2
m

)
(∓x)mb

1
2−m (A18)

where we have used the binomial coefficient(
k
m

)
=

k!
m!(k −m)!

if 0 ≤ m ≤ k

= 0 if m < 0 or k < m.

Since 0 < g < 1, we have x = 2g cos(ωτc)| < g2 + 1 = b,
and the series in Eq. (A18) always converges. How-
ever, as g → 1, b → 2, and when ωτc → n2π with
n = 0, 1, 2, 3, 4, . . . , x→ b and the series converges slowly.
Replacing x and b by their explicit values, we get

Ψ1 =
∞∑
m=0

(
1
2
m

)
(∓2)mgm(g2 + 1)

1
2−m cosm(ωτc).

(A19)

Since cosm(ωτc) can be written as the finite sum

cosm(ωτc) =
m∑
k=0

(
m
k

)
2−me−i(2k−m)ωτc , (A20)

and since the IFT of e−i(2k−m)ωτc is

1
2π

∫ ∞
−∞

e−i(2k−m)ωτc dω = δ(2kτc − t−mτc),

the IFT of Ψ1 can be expressed as

ψ1(t) =
∞∑
m=0

(
1
2
m

)
(∓g)m

(
g2 + 1

) 1
2−m ×

m∑
k=0

(
m
k

)
δ(2kτc − t−mτc). (A21)

• Ψ2: Explicitly, Eq. (A6) is

Ψ2 =
sec(ωτc)

4gγ
.

The problem is that the IFT of sec(ωτc) cannot be ex-
pressed in terms of real delta functions. However, the
function sec(ωτc) can be expressed as

sec(ωτc) =
1√

1− sin2(ωτc)
(A22)

if n2π − π

2
< ωτc < n2π +

π

2
with n = 0, 1, 2, 3, 4, . . .

Furthermore, we note that since

1 ≤ γ ≤ 1
1− g

and 0 < g < 1, (A23)

the arguments of the inverse cosine function in Eq. (60)
obeys the condition:

g2γ2 + γ2 − 1
2gγ2

≥ 0 (A24)

which leads us to write

0 ≤ φ ≤ π

2
. (A25)

In light of this expression and Eq. (56), we conclude that
the conditions for the validity of Eq. (A22) are always
satisfied in Branch-I bands.

Similarly, we find that sec(ωτc) can be expressed as

−1/
√

1− sin2(ωτc) for conditions that are always satis-
fied for Branch-II bands. Therefore, we can write

sec(ωτc) = ± 1√
1− sin2(ωτc)

, (A26)
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for which we wish to use the expansion

1√
1− u

=
∞∑
m=0

(
− 1

2
m

)
(−1)mum. (A27)

However, this series converges only for |u| < 1. For our
particular case, u = sin2(ωτc) and the series diverges
at ωτc = nπ/2, with n = 1, 3, 5, 7, . . . From the band
division conditions in Eqs. (56) and (56) we see that these
values of ωτc are always outside Branch-I and Branch-II
bands; therefore the convergence of the series is assured
and this allows us to express Eq. (A26) as

sec(ωτc) = ±
∞∑
m=0

(
− 1

2
m

)
(−1)m sin2m(ωτc). (A28)

Since sin2m(ωτc) can be written as the finite sum

sin2m(ωτc) =
2m∑
k=0

(
2m
k

)
(−1)k+m4−me2i(k−m)ωτc ,

(A29)
and since the IFT of e2i(k−m)ωτc is

1
2π

∫ ∞
−∞

e2i(k−m)ωτc dω = δ(t+ 2kτc − 2mτc), (A30)

the IFT of Ψ2 can be expressed as

ψ2 = ± 1
4gγ

∞∑
m=0

(
− 1

2
m

)
(−1)m ×

2m∑
k=0

(
2m
k

)
(−1)k+m4−mδ(t+ 2kτc − 2mτc).

(A31)

• Ψ3: The function 1/
√
b∓ x, with b = g2 + 1, has a

series expansion in the form of Eq. (A18), but with the
fraction 1/2 inside the binomial coefficient replaced by
−1/2. Therefore, by analogy with the result expressed
in Eq. (A21), we have

ψ3(t) =
∞∑
m=0

(
− 1

2
m

)
(∓g)m

(
g2 + 1

) 1
2−m ×

m∑
k=0

(
m
k

)
δ(2kτc − t−mτc), (A32)

which has the same convergence behavior as that of ψ1.
• Ψ4: The IFT of Ψ4 = 2γx = 4γg cos(ωτc) is straight-

forward:

ψ4 = 2γgδ(τc − t) + 2γgδ(t+ τc). (A33)

• Ψ5: Explicitly, Eq. (A9) is

Ψ5 =
sec3(ωτc)

(4gγ)3
, (A34)

where, following the same arguments as in the case of Ψ2,
the function sec3(ωτc) can be expanded in a convergent
series of the form of that in Eq. (A28), but with the
fraction −1/2 inside the binomial coefficient replaced by
−3/2. Therefore, by analogy with the result expressed
in Eq. (A31), we have

ψ5 = ± 1
(4gγ)3

∞∑
m=0

(
− 3

2
m

)
(−1)m ×

2m∑
k=0

(
2m
k

)
(−1)k+m4−mδ(t+ 2kτc − 2mτc).

(A35)

• Ψ6: Eq. (A10) can be written as

Ψ6 =
1

1− y(c)
(A36)

where

y ≡ c

x
=

c

2g cos (ωτc)
, (A37)

and c represents either c1 or c2, given by Eqs. (A11) and
(A12), respectively. We wish to expand the function in
Eq. (A36) into the power series

σ(c) ≡
∞∑
p=0

yp(c) (A38)

but this series converges only for

|y(c)| < 1. (A39)

We now show that this convergence condition leads to a
restriction on the allowable range of γ and g, but that
this restriction does not limit the applicability of the IR
to real listening configurations.

The inequalities in Eq. (A25), and the band divi-
sion conditions in Eq. (56) and (58), imply that x =
2g cos(ωτc) is always positive in Branch-I bands and neg-
ative in Branch-II bands. Furthermore, we see from
Eqs. (A11) and (A12) that, under the conditions in
Eq. (A23), c1 ≥ 0 and c2 ≤ 0. Therefore, we have

y(c1) = c1/x ≥ 0 in Branch-I bands, (A40)
y(c1) = c1/x ≤ 0 in Branch-II bands, (A41)

and

y(c2) = c2/x ≤ 0 in Branch-I bands, (A42)
y(c2) = c2/x ≥ 0 in Branch-II bands. (A43)

If we define η+(c) and η−(c) to be the non-dimensional
frequencies, ωτc, at which y(c) = +1 and y(c) = −1,
respectively, we can, in light of the expressions above,
restate the convergence condition in Eq. (A39) as:

σ(c1) converges in Branch-I bands if
φ ≤ η+(c1) (A44)

σ(c1) converges in Branch-II bands if
η−(c1) ≤ π − φ (A45)
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and

σ(c2) converges in Branch-I bands if
φ1 ≤ η−(c2)) (A46)

σ(c2) converges in Branch-II bands if
η+(c2) ≤ π − φ. (A47)

Therefore, for σ(c) to converge in Branch-I and Branch-II
bands, all four inequalities must be satisfied. To express
these convergence conditions explicitly (i.e., in terms of
conditions on γ and g), we first set y(c) = +1 and y(c) =
−1, and solve for η+(c) and η−(c), respectively, to find

η+(c1) = cos−1

(
f(g, γ)− 1

16gγ2

)
(A48)

η−(c1) = cos−1

(
−f(g, γ) + 1

16gγ2

)
(A49)

and

η+(c2) = cos−1

(
−f(g, γ)− 1

16gγ2

)
(A50)

η−(c1) = cos−1

(
f(g, γ) + 1

16gγ2

)
(A51)

where, for compactness, we have used the function f(g, γ)
defined as

f(g, γ) ≡
√

16 (g2 + 1) γ2 + 1.

Using these four explicit expressions, along with the defi-
nition of φ given by Eq. (60), we find that the inequalities
in Eqs. (A44) and (A47) lead to the same explicit con-
vergence condition:

f(g, γ) + 7
8(g2 + 1)γ2

≤ 1; (A52)

and the inequalities in Eqs. (A45) and (A46) lead to

f(g, γ) + 9
8(g2 + 1)γ2

≤ 1. (A53)

Since both of these inequalities need to be satisfied, and
since the latter condition is more stringent than the for-
mer, we must satisfy the latter. We can finally state
the condition for σ(c) to converge in both Branch-I and
Branch-II bands explicitly in terms of g and γ:√

16 (g2 + 1) γ2 + 1 + 9
8(g2 + 1)γ2

≤ 1. (A54)

This convergence condition is illustrated in the region
plot of Fig. 9, where the black region denotes the values of
g and γ for which the convergence condition is violated.
It is clear that this restriction only slightly limits the

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

Γ

g

FIG. 9: Region plot showing the allowed values for g and γ
(white). The black-shaded region is where the series conver-
gence condition in Eq. (A54) is not satisfied, and the grey-
shaded region is where the general condition in Eq. (52) is
violated.

range of allowable γ and g, and is not relevant to real
listening geometries, where g ' 1.

Aside from the series convergence condition above, γ
must satisfy the general condition given by Eq. (52)
(whose region of violation is shaded in grey in Fig. 9).
Therefore, we combine both conditions in the following
expression:

max

(√
5 +
√

5

2
√
g2 + 1

, 1

)
≤ γ ≤ 1

1− g
, (A55)

where the first argument of the max function comes from
setting the left-hand side of the convergence condition in
Eq. (A54) to 1, and solving for γ.

Now that we have found the convergence condition for
the series in Eq. (A38), we can express Ψ6 as that series
and proceed to find its IFT. Replacing y and x in that
series by their explicit values, we write

Ψ6 =
∞∑
p=0

(
c

2g

)p
secp(ωτc). (A56)

The secp(ωτc) term can be expanded in a convergent se-
ries of the same form as the series in Eq. (A28), but with
the fraction −1/2 inside the binomial coefficient replaced
by −p/2, and this leads to:

Ψ6 =
∞∑
p=0

(
±c
2g

)p ∞∑
m=0

(
−p2
m

)
(−1)m sin2m(ωτc).

(A57)
Finally, recalling the finite sum in Eq. (A29), and the
associated IFT in Eq. (A30), we arrive at the sought
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expression for the IFT of Ψ6(c):

ψ6(c) =
∞∑
p=0

(
±c
2g

)p ∞∑
m=0

(
−p2
m

)
(−1)m ×

2m∑
k=0

(
2m
k

)
(−1)k+m4−mδ(t+ 2kτc − 2mτc).

(A58)

The complete impulse response of the optimal XTC
filter is assembled according to Eqs. (A13) to (A15), and
is valid under the condition stated in Eq. (A55).

APPENDIX B: NUMERICAL VERIFICATION

The optimal XTC IR derived in the previous appendix
was evaluated for the typical case of g = .985 and
Γ = 7 dB, and plotted in Fig. 8. To verify the IR’s valid-
ity and assess the effect of the number of terms in the se-
ries expansions, we calculated its Fourier transform and
compared the resulting spectra to those obtained from
the frequency-domain expressions of Section IV B. An
example is shown in Fig. 10 for the Branch-I part of the
XTC spectra (top panel) and envelope spectra (bottom
panel).

We found that excellent agreement (within a few tenths
of a dB) over all frequencies does not require taking

more than the first few (5-10) terms of the infinite se-
ries in the expressions for all the ψ functions constitut-
ing the IR, except for ψ1 and ψ3, which, due to their
slow convergence at and near the frequencies ωτc = n2π
( n = 0, 1, 2, 3, 4, . . . ), require taking a larger number of
terms. Approximating the infinite series in the expres-
sions for ψ1 and ψ3 by a sum having a finite number of
terms causes departures from the correct amplitude spec-
tra at and near these frequencies. Due to the logarithmic
frequency scale, the n = 0 departure appears as a slight
bass roll-off in the first band (seen as the first dot in the
first Branch-I band in the bottom panel of Fig. 10), and
the n ≥ 1 departures appear as narrow-band spikes (such
as the one appearing as three vertical dots in the fifth
band in the same plot). Increasing the number of terms
in the series above 1000 reduces the amplitude of the bass
roll-off and pushes it into the subwoofer frequency range,
where XTC is not needed, and causes the n ≥ 1 spikes
to diminish in amplitude and frequency extent so as to
become inaudible. (The XTC spectrum is more immune
from the aforementioned departures, as seen in the top
panel, because it is a ratio of left to right spectra.)

A similar analysis of the Branch-II part of the IR is not
shown as the resulting spectra exhibit the same behavior
as that described above.
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